

Boston Multifamily Housing Stock Analysis

Completed February 2020

Table of Contents

- Multifamily Housing Stock Analysis Overview
- Envelope Retrofit Opportunities
- Heat Pump Retrofit Opportunities
- Retrofit Package Opportunities
- Ownership, Decision-making, & Social Vulnerability Indicators
- Recommendations

Multifamily Housing Stock Analysis | Overview

Background and Summary of Project

Boston began working with the Building Electrification Institute (BEI) in 2020 as a partner through the Bloomberg <u>American</u> <u>Cities Climate Challenge</u>. Buildings account for over 70% of Boston's greenhouse gas (GHG) emissions, and achieving the City's goal of carbon neutrality will require retrofitting and electrifying at least 80 percent of existing buildings.

To support the development of an electrification strategy for multifamily buildings, BEI and its consultant, The Cadmus Group, developed an inventory of all multifamily buildings in Boston and analyzed retrofit opportunities for this building stock. Using available data, BEI grouped Boston's multifamily buildings into common typologies and identified potential envelope and electrification retrofits for these typologies. BEI also assessed building ownership and decision-making indicators and citywide social vulnerabilities to help inform potential future program development needs for Boston's multifamily buildings.

Multifamily Housing Stock Analysis | Objectives

The purpose of the Multifamily Housing Stock Analysis was to:

- Identify potential envelope and electrification retrofit packages across Boston's multifamily buildings to better understand the prevalence of these opportunities in Boston.*
- Assess ownership, decision-making, and social vulnerability indicators to help inform potential program design and approaches for multifamily retrofits.
- Identify data gaps that prevent identification of potential retrofits in buildings.

The deliverables for this analysis included:

- A parcel-level inventory of Boston's multifamily buildings in Excel format.
- The following slide deck with data visualizations and key findings from the project team's analysis of the building inventory.

Multifamily Housing Stock Analysis | Approach

1) Compile data from various sources into a single, parcel-level dataset 2) Assign building typologies based on common characteristics 3) Identify envelope and heat pump retrofit opportunities

4) Layer on additional indicators

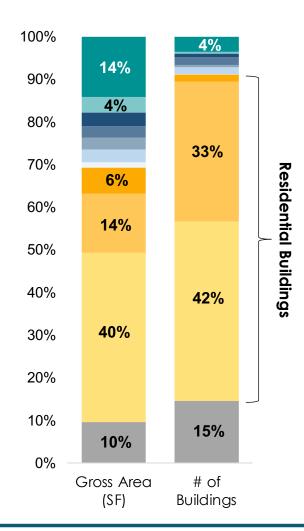
First, the BEI team aggregated datasets from the the City, local utilities, and the American Census Bureau into a single dataset for all multifamily buildings in Boston, aggregated at the parcel (or property) level. The team then **assigned** each parcel record to a specific multifamily building typology based on building use type, vintage, and number of units. Where data was available, the team **identified potential electrification retrofit opportunities. Envelope upgrade opportunities were included** due to Boston's cold climate, since these improvements could help improve the costeffectiveness of the retrofits (however, economics were not analyzed for this project).

Finally, the team used City and Census Tract data to evaluate ownership, decision-making, and social vulnerability indicators that could help inform future program and policy design.

Notes on our approach: This analysis is intended to inform the potential for program or policy design/planning efforts only; retrofits for any specific building should be evaluated on-site by a professional for feasibility and applicability. Additionally, this analysis does assess full retrofit economics.

Multifamily Housing Stock Analysis | Datasets

BEI used the following datasets for the Multifamily Housing Stock Analysis:


Dataset	Source*	Geography	Total # of Records	Match Rate with Parcel Data
Parcels (2017)	<u>City of Boston, Boston Maps</u>	Parcel	98,930	Matched against
Building Footprints	<u>City of Boston, Boston Maps</u>	Buildings	121,056	Not matched with parcels but used for geospatial analysis
Tax Assessor Data (2019)	City of Boston, Assessing Department	Parcel, address, unit	172,108	99.3%
Boston Apt Unit Counts (2019)	City of Boston, Assessing Department	Parcel, address	4,771	99.2%
Eversource Multi-Family Electric Resistance Heating	Eversource Energy	Parcel, address, unit	939	79.2%
Income-Restricted Housing Data (2018)	City of Boston, Department of Neighborhood Development	Parcel, address	2,775	97.9%
Building Permits (General)	City of Boston, Inspectional Services Department	Parcel, address	414,629	98.0%
Building Permits (in Historic/Landmark Buildings)	City of Boston, Inspectional Services Department	Address	60,827	98.0%
Historic Districts	City of Boston, Landmarks Commission	Historic Districts	24	100%
Landmarks	City of Boston, Landmarks Commission	Landmark Districts	170	100%
Multiple Listing Service (MLS)	City of Boston, Assessing Department	Parcel, address, unit	2,299	37.5%
MassCEC Mass Save Program Data (up to March 2015)	Massachusetts Clean Energy Center	Parcel, address, unit	794	39.9%
Boston Building Energy Reporting and Disclosure Ordinance (BERDO) Data (2018)	City of Boston, Department of the Environment	Parcel, address, unit	1,596	65.1%
Social Vulnerability Indicators	U.S. Census Bureau, <u>Climate Ready Boston Social</u> <u>Vulnerability</u>	Census Tract	1,478 (tracts)	100%

*Datasets without hyperlinks are from sources that are not publicly available.

Multifamily Housing Stock Analysis | Building Typologies

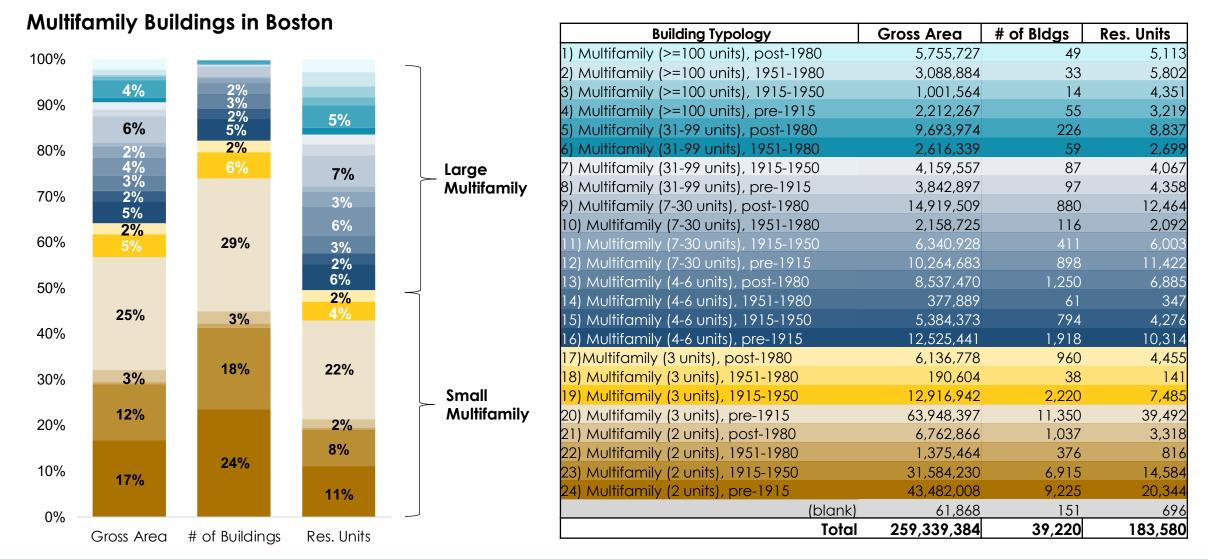
Boston Buildings – Citywide

lding ctrification

nstitute

Building Use Type	Building Gross Area (SF)	Number of Buildings
Office	92,102,017	3,291
Medical/Lab/Production	23,946,072	392
Convention/Assembly	20,960,195	760
Retail/Supermarket/ Restaurant	17,224,086	1,723
School/Fire/Police/Worship	18,552,705	462
Garage/Warehouse	19,261,561	1,502
Hotel	8,509,334	83
Residential (Mixed-Use)	39,535,704	1,585
Single Family	90,632,362	30,555
Multifamily	259,339,384	39,220
Vacant/Blank	62,864,146	13,507
Total	652,927,566	93,080

There are over 90,000 buildings in Boston, accounting for more than 650 million square feet of space.


Residential buildings account for:

- 80% of Boston's buildings
- 60% of the built square footage

Multifamily buildings (residential buildings with 2 or more units) account for:

- 42% of Boston's buildings
- 40% of the built square footage

Multifamily Housing Stock Analysis | Multifamily Typologies

Building

nstitute

Table of Contents

- Multifamily Housing Stock Analysis Overview
- Envelope Retrofit Opportunities
- Heat Pump Retrofit Opportunities
- Retrofit Package Opportunities
- Ownership, Decision-making, & Social Vulnerability Indicators
- Recommendations

Multifamily Envelope Retrofits

Opportunities for envelope retrofits are identified using building-level data on roof type, heating system type, exterior finish, building height, and historic buildings/landmarks.

Envelope Indicators

Data Indicator	Description/Categories	% of Small Multifamily Buildings (2-3 Units) with Values	% of Large Multifamily Buildings (4+ Units) with Values
Roof Type	Attics (Gable, Hip, Gambrel, Mansard), Flat, Other, Blank	85.8%	0.04%
Heating System Type	Electric, Forced Air, Heat Pump, Space Heater, Hot Water, Other, None	100%	40.0%
Exterior Finish	Asbestos, Mass (Brick/Stone, Cement Board, Concrete, Asphalt, Stucco), Non-Mass (Frame/Clapboard, Vinyl, Aluminum, Brick/Stone Veneer, Wood, Shake). Glass, Other	100%	37.7%
Height	Number of floors	100%	97%
Historic/ Landmark	Indicate whether property is in a landmarks and/or historic district	100%	100%

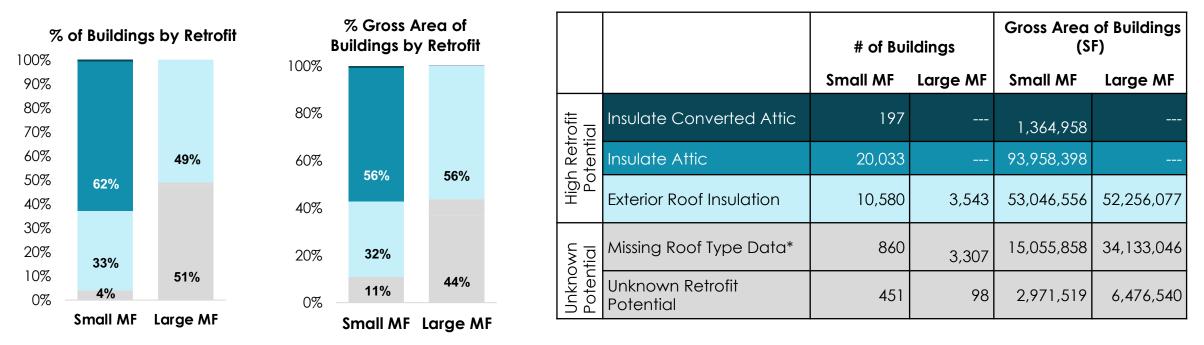
Multifamily Envelope Retrofits

Potential envelope retrofit measures are organized into five categories.

Envelope Retrofit Categories

Category	Retrofits
Standard Envelope Retrofit*	 Air Sealing/Weather-stripping Window Upgrades at the Time of Replacement Insulate Rim Joist
Attic/Roof Retrofit	 Insulate Attic Interior Insulation in Converted Attic Exterior Roof Insulation
Heating Distribution Insulation**	Insulate Exposed PipesInsulate Exposed Ducts
Wall Retrofit	 Interior Blown/Spray Insulation Interior Wall Insulation Board Insulate Behind Spandrel Exterior Wall Insulation at Time of Replacement Exterior Wall Insulation Consult Professional (asbestos may be present)

*All buildings are assumed to have the potential for a standard envelope retrofit.

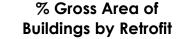

**While insulating heating distribution is not actually considered part of the "envelope" it was included in this analysis since this data was available. See additional details on these indicators in the Appendix.

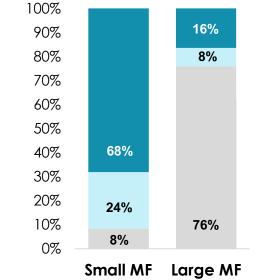
Multifamily Envelope Retrofits | Attic/Roof Retrofit

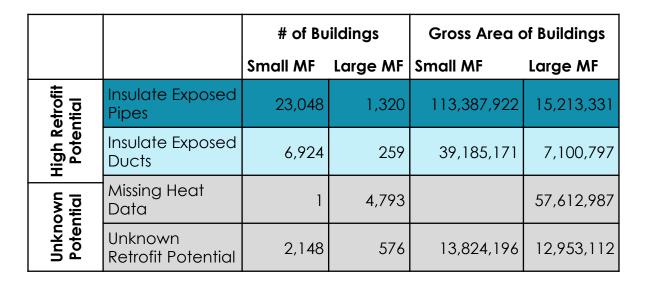
Attic/Roof Insulation Opportunities

- In small multifamily buildings, there appear to be significant opportunities to insulate attics.
- Larger multifamily buildings are more likely have flat roofs, making exterior roof insulation a more common retrofit opportunity, although the high proportion of buildings that are envelope data limits the ability to identify retrofits.

Notes on Methodology: Buildings with an attic have the potential to insulate the attic, while buildings with a flat roof were identified has having the opportunity for exterior roof insulation. Multifamily buildings 4 stories and above were assumed to have flat roofs if missing roof data. The data evaluated indicates that there are few converted attics in small multifamily properties, although anecdotally converted attics are common. This should be further verified and updated as needed.

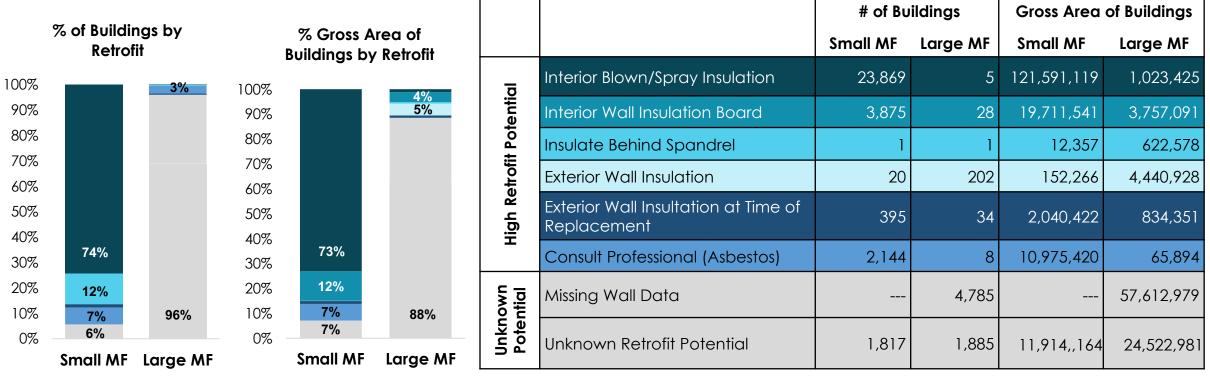

Multifamily Envelope Retrofits | Heating Distribution Retrofit


Heating Distribution Insulation Opportunities


- A significant majority of multifamily buildings would benefit from insulating pipes. A smaller portion would benefit from insulating heating ducts.
- The significant number of large multifamily buildings that are missing heating system data limits the ability to identify retrofits.

% of Buildings by Retrofit

Notes on Methodology: The types of heating insulation is determined based on building vintage (whether the building was built before 2000) and/or whether the building and has the presence of ducts or pipes.

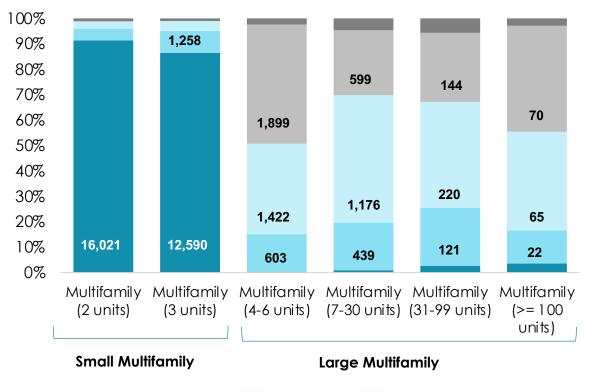


Multifamily Envelope Retrofits | Wall Retrofit

Wall Retrofit Opportunities

Building Electrification

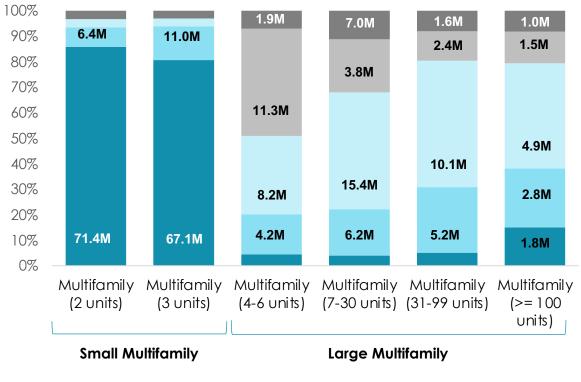
- A significant number of small multifamily buildings have potential for spray or blown-in insulation. A smaller number have the potential for wall board insulation and other types of wall insulation.
- The significant number of large multifamily buildings that are missing data limits the ability to further identify retrofits.



Multifamily Envelope Retrofits | Envelope Packages

Envelope Package Opportunities

• A significant number of multifamily buildings have the potential for two or more envelope retrofits.


1 Retrofit

3 Retrofits

2 Retrofits

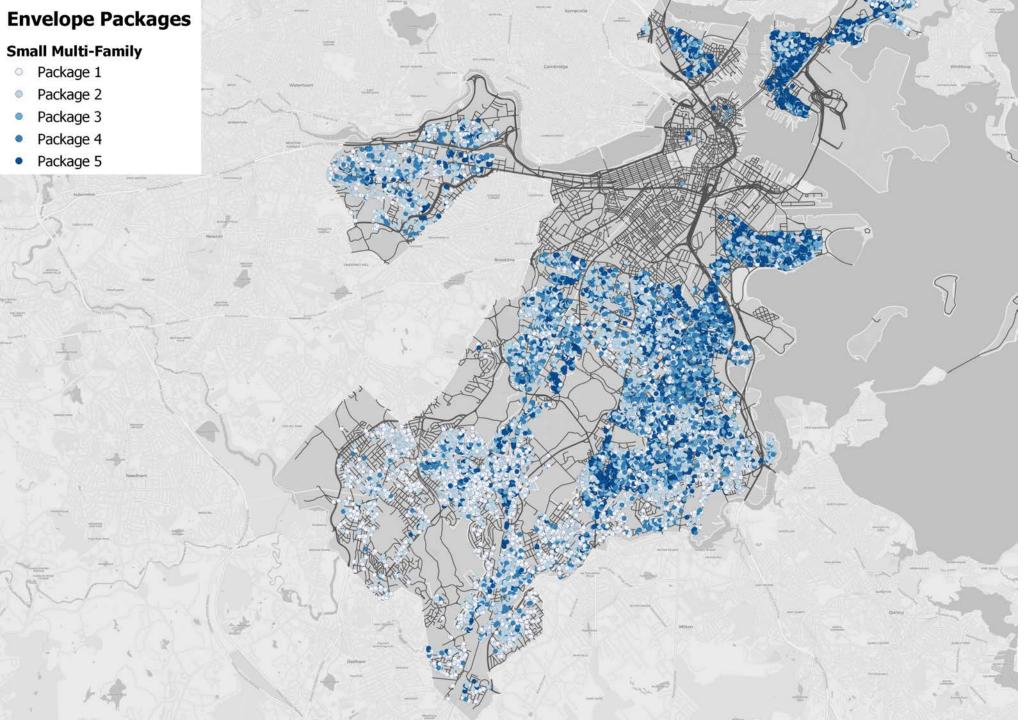
Proportion of MF Buildings by Envelope Retrofit

Proportion of MF Gross Area by Envelope Retrofit

■ Missing Data* ■ Unknown Retrofit Potential

Notes on Methodology: Envelope packages reflect all high potential envelope retrofits for each building, including attic/roof insulation, heating distribution insulation, wall retrofits, and/or standard retrofit opportunities.

Envelope Retrofits | Envelope Packages


#	Top 5 Small Multifamily High Potential Envelope Retrofit Packages	# of buildings (% of Small MF buildings)	Gross area (% of Small MF Area)
1	Insulate attic; Insulate exposed pipes; Add blown/spray insulation to interior walls	12,482 (39%)	58.7M (35%)
2	Add exterior roof insulation; Insulate exposed pipes; Add blown/spray insulation to interior walls	5,095 (16%)	25.6M (15%)
3	Insulate attic; Insulate exposed ducts; Add blown/spray insulation to interior walls	3,301 (10%)	15.5M (9%)
4	Add exterior roof insulation; Insulate exposed ducts; Add blown/spray insulation to interior walls	2,001 (6%)	10.1M (6%)
5	Insulate attic; Insulate exposed pipes; Add insulation board on to interior walls	1,582 (5%)	7.4M (4%)
	Total for Top 5 Packages	24,461 (76%)	117.8M (71%)

#	Top 5 Large Multifamily High Potential Envelope Retrofit Packages	# of buildings (% of Large MF buildings)	Gross area (% of Small MF Area)	
1	Add exterior roof insulation	2,462 (35%)	33.2M (35%)	
2	Add exterior roof insulation; Insulate exposed pipes	855 (12%)	8.6M (9%)	
3	Insulate exposed pipes	319 (5%)	2.4M (3%)	
4	Add exterior roof insulation; Insulate exposed ducts	131 (2%)	2.1M (2%)	
5	Insulate exposed pipes; Add exterior wall insulation	84 (1%)	2.0M (2%)	
	Total for Top 5 Packages	3,861 (55%)	46.5M (50%)	

The top 5 envelope retrofit packages account for over 50% of small and large multifamily buildings.

- Small multifamily buildings have more retrofit packages identified, which is due to the greater availability of data.
- Buildings with few or no high-potential envelope retrofits identified likely still have opportunities for envelope energy savings and should be evaluated further on-site.

Key Takeaways

Based on the available data, there appear to be many opportunities for envelope retrofits in small multifamily buildings.

These buildings tend to be concentrated in the outer Boston neighborhoods, which are generally an older building stock.

Key Takeaways

Opportunities for envelope retrofits in large multifamily buildings for which there is data tend to be clustered in Back Bay, the South End, Charlestown, and along the border of Brookline.

Table of Contents

- Multifamily Housing Stock Analysis Overview
- Envelope Retrofit Opportunities
- Heat Pump Retrofit Opportunities
- Retrofit Package Opportunities
- Ownership, Decision-making, & Social Vulnerability Indicators
- Recommendations

Multifamily Heat Pump Retrofits

Opportunities for heat pump retrofits are identified using building-level data on building age, building height, heating system type, cooling system type, roof type, lot size, and building size.

Air Source Heat Pump Indicators

Retrofit Criteria	Description	Key Data Indicator	% of Small Multifamily (2-3 Units) with Values	% of Large Multifamily (4+ Units) with Values
Electrical	Assumptions on if there is sufficient electrical capacity (at least ~200 amps) in the building, or if the building	A/C Type	100%	37%
Capacity	would require an electrical panel upgrade.	Year Built	100%	98%
Distribution	Assumptions on the heating and/or cooling distribution such as ducts or pipes to match to	Heating Type	100%	40%
	expected heat pump technology.	A/C Type	100%	37%
Line Length/	Assumptions on if there is space outdoors, on the wall, or on the roof for outdoor components such as condensers or ground source piping. Also includes assumptions on building heights given heat pump technology line length restrictions.	Building Height	100%	97%
Location of Outdoor		Roof Type	86%	100%
Components		GIS land estimates	100%	100%
Building Size	Assumptions on appropriateness of building size for technically feasible and cost-effective retrofits.	Gross Area Size	100%	100%

Multifamily Heat Pump Retrofits

The potential heat pump retrofit measures are organized into the five categories below.

Heat Pump Retrofit Categories*

Heat Pump Category	Retrofits	Heat Pump Only Retrofits
Ducted Air Source Heat Pump (ASHP)	 Heat Pump Only Heat Pump + Upgrade to Electrical Capacity Heat Pump + Identify Outdoor Location 	recommend only the hea technology Heat Pump + Upgrade to
Ductless Air Source Heat Pump (ASHP)	 Heat Pump Only Heat Pump + Upgrade to Electrical Capacity Heat Pump + Identify Outdoor Location 	Electrical Capacity Retrof recommend that heat pu accompanied with upgro
Ground Source Heat Pump (GSHP)	 Heat Pump Only** 	the electrical panel Heat Pump + Identify Out
Variable Refrigerant Flow (VRF)	Heat Pump OnlyHeat Pump + Upgrade to Electrical Capacity	Location recommend that professional will need to id
Air to Water Heat Pump (AWHP)	Heat Pump OnlyHeat Pump + Upgrade to Electrical Capacity	where to place the outdo condenser

the heat pump

arade to ity Retrofits

heat pumps are ith upgrades to nel

ntify Outdoor

nend that a need to identify he outdoor

*See additional details in the Appendix.

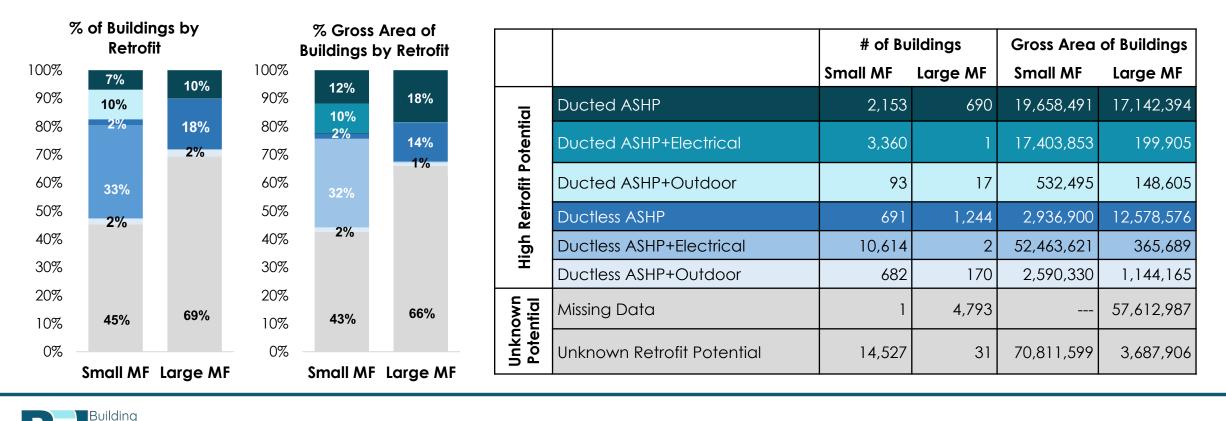
**This analysis assumes that buildings that have sufficient land and heating load for a GSHP will likely already have sufficient electrical capacity and space for outdoor condenser.

Multifamily Heat Pump Retrofits | ASHP Retrofit

ASHP retrofits include both ducted and ductless ASHP retrofit opportunities, which were identified based on the following indicators.

Retrofit Criteria	Ductless ASHP	Ducted ASHP		
Distribution System Whether to upgrade to ductless vs. ducted system	 Buildings without forced air and central A/C do not have existing ducts and are therefore better suited for ductless ASHP retrofits. 	• Buildings with forced air or central A/C have existing ducts for distribution and therefore may be well-suited for ducted ASHP retrofits, if the ductwork is reusable.		
Electrical Capacity Whether there is sufficient electrical panel capacity for a heat pump upgrade	 Larger buildings have a larger baseload and would be more likely to have sufficient electrical capacity for ASHPs. Newer buildings are more likely to be constructed with sufficient capacity for ASHPS. Buildings with electrical heating are more likely to have sufficient capacity for ASHPs. 			
Line Length/Location of Outdoor Components Whether there is a clear location for the outdoor condenser	 Buildings with existing A/C condensers can reuse the outdoor location for the new ASHF Newer roofs may have the structural requirements for roof mounting of the outdoor condenser. Shorter buildings can site on the ground if there is a 3-foot buffer around the building. 			

Ductless and Ducted ASHP Indicator Assumptions



Multifamily Heat Pump Retrofits | ASHP Retrofit

ASHP Retrofit Opportunities

lectrification

- Ductless ASHPs have wider applicability compared to ducted ASHPs. Smaller multifamily buildings would likely also require upgrades to the electrical panels.
- Nearly 50% of small multifamily buildings do not have a high potential retrofit identified. These likely would require electrical upgrades and would need an outdoor location for condensers.

Multifamily Heat Pump Retrofits | GSHP Retrofit

The potential for GSHP retrofits include are identified based on outdoor space availability, existing heating and cooling system type, and the building size.

Data Indicator Rules	Heat Pump Only Retrofit	Description
Distribution	Heating: Hot Water and Cooling: Central A/C OR Heating: Forced Air and Cooling: Central A/C	These can be more easily converted to GSHPs without major modifications.
Line Length/ Location of Outdoor Components	Sufficient available land for boreholes to support the building's heating/cooling load AND Must be at least 15 ft minimum from foundation and at least 10 ft from adjacent property line	The calculation is based on availability of 20x20 blocks of land for boreholes to meet the heating capacity (based on size) of the building.
Building Size	Gross Area >3,200 feet	Larger buildings may be more cost-effective and feasible compared to smaller buildings.

GSHP Data Indicator Descriptions

95 multifamily buildings were identified with high GSHP potential, which account for 2% of multifamily square footage.

		# of Buildings		Gross Area of Buildings		
				Small MF	Large MF	
High Retrofit Potential	GSHP	58	37	697,021	1,959,900	
wn tial	Missing Heat Type	1	4,793		57,612,987	
Unknown Potential	Unknown Retrofit Potential	32,062	2,118	165.7M	22,207,340	

Data indicator sources: Tax assessor data, Eversource program data, MLS data, MassCEC data, and building footprint GIS analysis.

Notes: GSHPs require outdoor space on the building property for boreholes to meet the heating capacity of a building, which limits the applications for many existing buildings. There may be more space available if considering public land, such as alleys, that was not included in this analysis. This retrofit is only appropriate for full replacements of the heating and cooling system, also typically more appropriate for larger buildings for economic and technical reasons.

Multifamily Heat Pump Retrofits | VRF Retrofit

The potential for VRFs retrofits include are identified based on electrical capacity, cooling system type, availability of outdoor space, and building size.

VRF Data Indicator Descriptions

Data Indicator Rules	Heat Pump Only Retrofit	Description	177 multifamily buildings were identified with high VRF potential, which accourt						
Electrical Capacity	Gross Area >3,000 SF and Central AC OR Year Built after 1990 OR Electric Heating	Larger buildings have a larger baseload and then would be likely to have 200 amps. Newer buildings are more likely to have at least 200 amps. Buildings with electrical heating are more likely to have 200 amps.		4.7% (of multifo	# of Bu Small MF	•	Buil	Area of dings Large MF
Distribution	Heating: Not Forced Air AND A/C: Not Central AC	VRF does not rely on ducted distribution.		High Retrofit Potential	VRF	5	171	136,275	4,352,039
Line	Flat roof and > 1995 Year Built Newer roofs may have the structural and Height < 30 Stories and 3 requirements for roof mounting.		High R Pote	VRF+ Electric		1		114,422	
Length/Location of Outdoor Components	foot buffer around building OR 3 foot buffer around building and Height <15 Stories	Buildings below 15 stories can site on the ground.		Unknown Potential	Missing Heat Type	1	4,793		57,612,987
Building Size	Gross Area >10,000 SF	Larger buildings may be more cost- effective and feasible compared to smaller buildings		Unkr Pote	Unknown Retrofit Potential	32,115	1,983	166M	30,800,779

Notes: Variable Refrigerant Flows (VRF), like GSHPs, are only appropriate for full replacements. VRFs also tend to be most applicable for gut renovations when the longer refrigerant lines can be placed in the wall. Similarly, VRFs are typically more appropriate for larger buildings, though the exact building size cutoff is difficult to define. Data indicator sources: Tax assessor data, Eversource program data, MLS data, MassCEC data, and building footprint GIS analysis.

Multifamily Heat Pump Retrofits | AWHP Retrofit

The potential for AWHP retrofits include are identified based on electrical capacity, heating and cooling system type, and availability of outdoor space.

AWHP Data Indicator Descriptions

Data Indicator Rules	Heat Pump Retrofit	Description		739 multifamily buildings with high AWHP potential roughly 2.5% of multifami # of Buildings Small Large			
Electrical Capacity	Gross Area >3,000 SF and Central AC OR Year Built after 1990	Larger buildings have a larger baseload and thus would be likely to have 200 amps. Newer buildings are more likely to have been constructed with at least 200 amps.				# of Buildings Small Large	
Distribution	Heating: Hot Water and Cooling: Central A/C	Existing hydronic distribution for heating and cooling may allow for fewer modifications.		Retrofit ential	AWHP	MF 335	MF 157
Line Length/Location	Central A/C OR Flat roof and > 1995 Year Built and Height < 30 Stories and 3	Buildings with existing A/C have a location for the outdoor condenser. Newer roofs may have the structural requirements for roof mounting.		High Pot	AWHP+ Electric Missing	247	4,793
of Outdoor Components	foot buffer around building OR 3 foot buffer around building and Height <15 Stories	Shorter buildings can site on the ground.		Unknown Potential	Heat Type Unknown Retrofit Potential	31,538	1,998

vildings were identified otential, accounting for ultifamily square footage.

Gross Area of **Buildings**

Large MF

3,169,501

57,612,987

163.1M 32,097,739

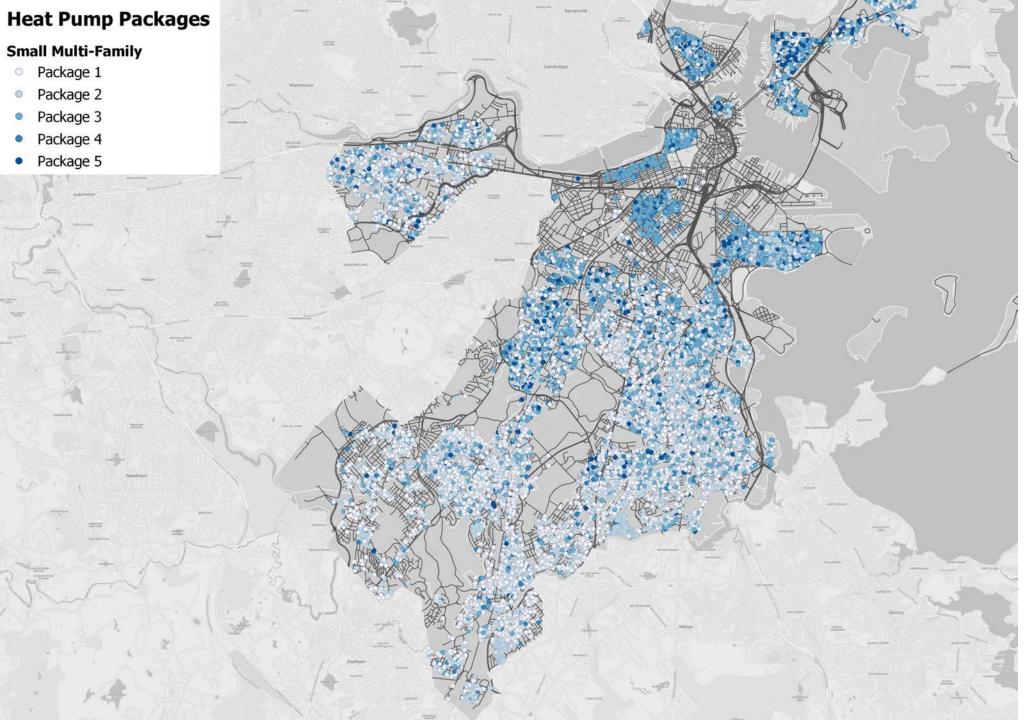
Small MF

2176,493

1119,756

Note: Analysis assumes that all buildings will need cooling. AWHP retrofit assumes that the baseline building provides heating and cooling, otherwise significant additional investments would be necessary to add cooling to the building. An on-site assessment is also needed to identify if retrofits are needed for the terminal units and distribution system. Data indicator sources: Tax assessor data, Eversource program data, MLS data, MassCEC data, and building footprint GIS analysis...

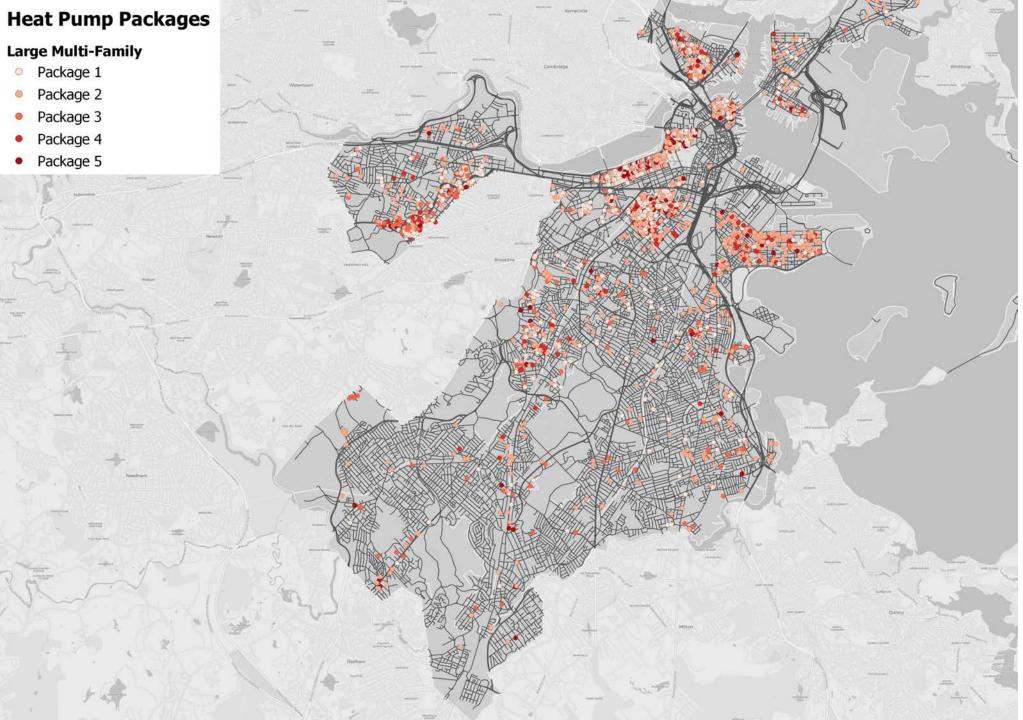
Heat Pump Retrofits | Heat Pump Packages


#	Top 5 Small Multifamily High Potential Heat Pump Retrofit Packages	# of buildings (% of Small MF buildings)	Gross area (% of Small MF Area)
1	Ductless ASHP with Electrical Upgrade	10,614 (33%)	52.5M (32%)
2	Ducted ASHP with Electrical Upgrade	3,113 (10%)	16.3M (10%)
3	Ducted ASHP	1,781 (6%)	17.0M (10%)
4	Ductless ASHP	686 (2%)	2.8M (2%)
5	Ductless ASHP with Outdoor Location	682 (2%)	2.6 (2%)
	Top 5 Small MF High Potential Retrofit Total	16,874 (53%)	91.1M (55%)

#	Top 5 Large Multifamily High Potential Heat Pump Retrofit Packages	# of buildings (% of Large MF buildings)	Gross area (% of Large MF Area)
1	Ductless ASHP	1,073 (15%)	8.2M (9%)
2	Ducted ASHP	506 (7%)	13.5M (15%)
3	Ductless ASHP or VRF	171 (2%)	4.4M (5%)
4	Ductless ASHP with Outdoor Location	170 (2%)	1.1M (1%)
5	Ducted ASHP or AWHP	147 (2%)	1.6M (2%)
	Top 5 Large MF High Potential Retrofit Total	2,067 (30%)	28.9M (31%)

The top 5 heat pump retrofit packages account for over 50% of small multifamily buildings and 30% of large multifamily buildings.

- Both small and large multifamily buildings have more retrofit opportunities with ductless heat pumps than ducted heat pumps.
- Small multifamily buildings are significantly more likely than large multifamily buildings to require an electrical panel upgrade.
- Roughly 40% of large multifamily buildings were missing heating system information, which limited identifying potential heat pump retrofits.



Key Takeaways

Based on available data, heat pump retrofit opportunities for small multifamily buildings appear to be dispersed throughout Boston (more so than potential envelope retrofits).

Additionally, small buildings in Back Bay and the South End appear less likely to need electrical upgrades for heat pumps.

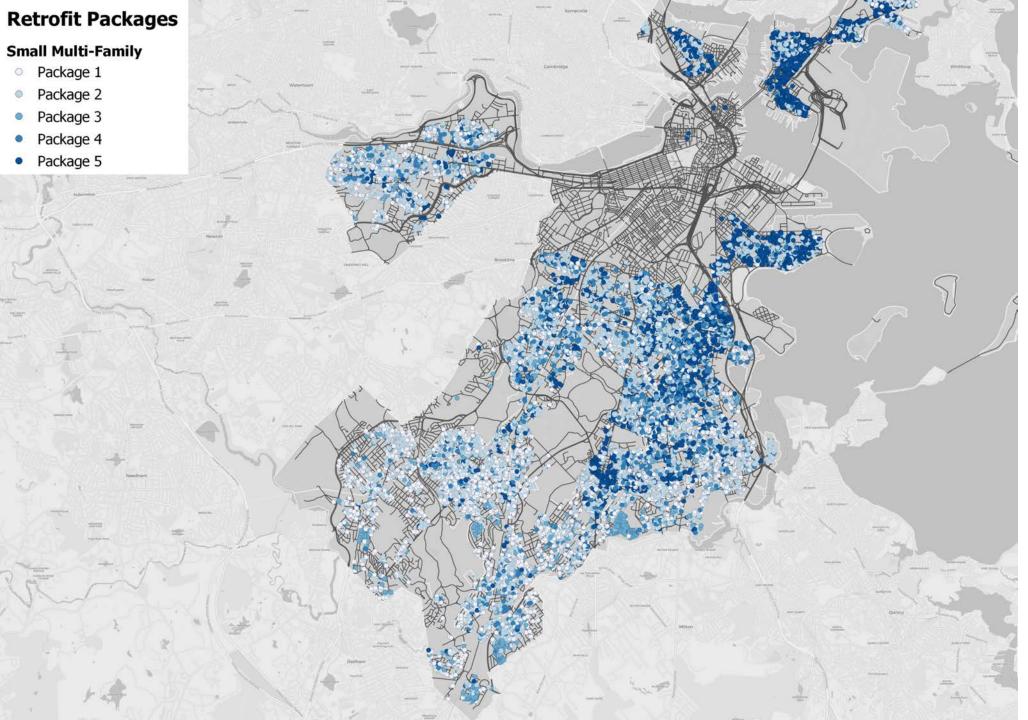
Key Takeaway

Based on available data, there are clusters of large multifamily buildings that could be prioritized for heat pump retrofits in Back Bay, the South End, South Boston, Charlestown, and along the border of Brookline.

Table of Contents

- Multifamily Housing Stock Analysis Overview
- Envelope Retrofit Opportunities
- Heat Pump Retrofit Opportunities
- Retrofit Package Opportunities
- Ownership, Decision-making, & Social Vulnerability Indicators
- Recommendations

Retrofit Packages | Small Multifamily


Retrofit packages for small multifamily buildings combine both envelope and heat pump retrofits to identify combinations of measures with a high opportunity for potential implementation in Boston.

- The top 5 retrofit packages for small multifamily buildings represent over 50% of small multifamily buildings.
- Retrofits that include an ASHP often require an upgrade to the electrical panel.

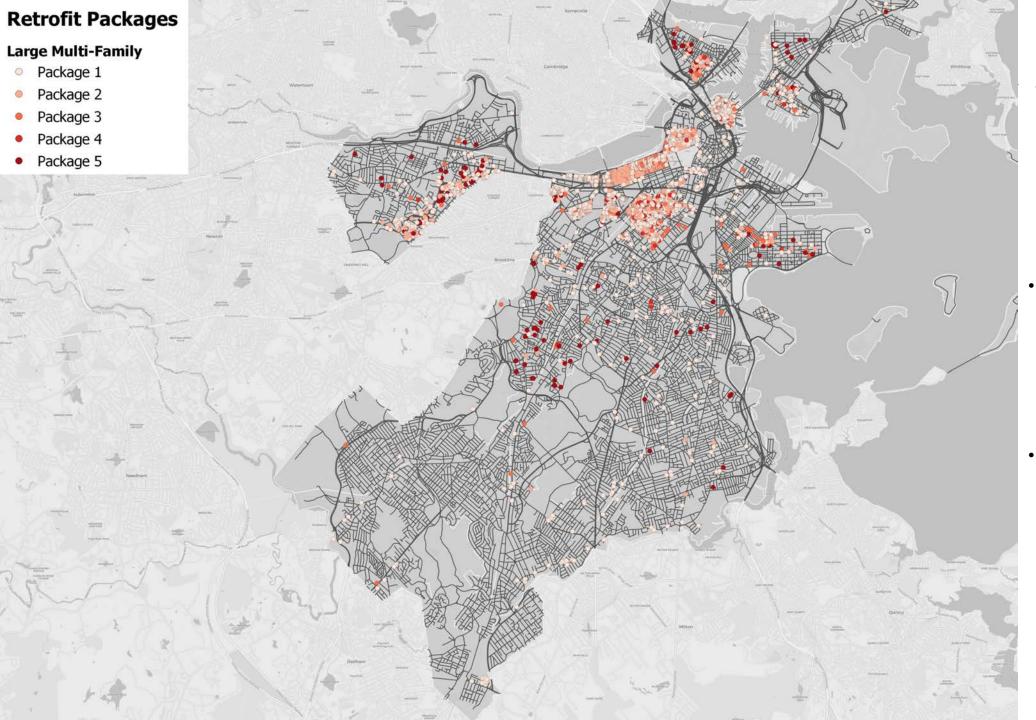
#	Top 5 Small Multifamily High Potential Retrofit Packages	# of buildings (% of Small MF buildings)	Gross area (% of Small MF Area)
1	Insulate attic; Insulate exposed pipes; Add blown/spray insulation to interior walls; Ductless ASHP with Electrical Upgrade	6,670 (21%)	31.3M (19%)
2	Insulate attic; Insulate exposed pipes; Add blown/spray insulation to interior walls	5,192 (16%)	24.4 (15%)
3	Add exterior roof insulation; Add blown/spray insulation to interior walls; Insulate pipes	3,631 (11%)	17.4 (10%)
4	Insulate attic; Insulate exposed ducts; Add blown/spray insulation to interior walls; Ducted ASHP with Electrical Upgrade	1,734 (5%)	7.6 (5%)
5	Insulate attic; Insulate exposed ducts; Add blown/spray insulation to interior walls	1,335 (4%)	6.3 (4%)
	Top 5 Small MF High Potential Retrofit Total	18,562 (58%)	87.0M (52%)

Note for Packages 1 and 2: Exposed pipes should only be insulated if heat pumps are phased in over time.

Key Takeaways

There are clusters of certain types of potential retrofit packages for small multifamily buildings, based on available data.

- Ducted buildings, with opportunities for ducted ASHPs and duct insulation, tend to be in South Boston, Roxbury, Dorchester and East Boston.
- Piped buildings, with
 opportunities for
 ductless heat pumps
 and pipe insulation,
 are in the outer areas
 including Roslindale,
 Hyde Park, and
 Allston/Brighton.


Retrofit Packages | Large Multifamily

Retrofit packages for large multifamily buildings combine both envelope and heat pump retrofits to identify combinations of measures with a high opportunity for potential implementation in Boston.

- The top 5 retrofit packages for large multifamily buildings represent nearly 50% of large multifamily buildings.
- Large multifamily buildings were more likely than smaller buildings to be missing data, making it more difficult to identify potential upgrades, but they may still greatly benefit from envelope and electrification retrofits.

#	Top 5 Large Multifamily High Potential Retrofit Packages	# of buildings (% of Large MF buildings)	Gross area (% of Large MF Area)
1	Add exterior roof insulation	2,102 (30%)	27.8M (30%)
2	Add exterior roof insulation; Insulate exposed pipes; Ductless ASHP	686 (10%)	5.6M (6%)
3	Add exterior roof insulation; Ducted ASHP	185 (3%)	3.3M (4%)
4	Add exterior roof insulation; Ductless ASHP	170 (2%)	1.1M (1%)
5	Add exterior roof insulation; Insulate exposed pipes	143 (2%)	1.0M (1%)
	Top 5 Large MF High Potential Retrofit Total	3,286 (47%)	38.8M (42%)

Key Takeaways

There are clusters of certain potential retrofit packages for large multifamily buildings, where data is available.

- Larger buildings are clustered in the South End and Back Bay, and they tend to have potential for Retrofit Packages 1 and 2.
- Outer areas of the city have fewer larger buildings, leading to fewer clusters of opportunities in these areas.

Table of Contents

- Multifamily Housing Stock Analysis Overview
- Envelope Retrofit Opportunities
- Heat Pump Retrofit Opportunities
- Retrofit Package Opportunities
- Ownership, Decision-making, & Social Vulnerability Indicators
- Recommendations

Ownership, Decision-making, & Social Vulnerability Indicators

Ownership, decision-making, and social vulnerability indicators can help predict non-technical opportunities or barriers to retrofits.

- These indicators provide insights on how building owners make decisions, who those decisions impact, and any potential associated risks or impacts to the tenants.
- Combined with technical retrofit packages, these indicators are particularly critical for policy and program development because they can help policymakers identify and prioritize buildings with the highest need for assistance.

Ownership, Decision-making, and Social Vulnerability Categories

Indicator Category	Description
Ownership Indicators	These indicators may predict decision-making styles to inform intervention strategies and support.
Decision-making Indicators	These indicators may predict a higher likelihood of early adopters of new technologies to shape outreach and messaging strategies.
Social Vulnerability Indicators	These indicators may predict higher likelihood of being negatively impacted by increased rents or energy costs, and positively impacted by health and building quality benefits from retrofits.

Ownership Indicators

Ownership indicators can help identify opportunities and challenges that different types of owners will face when it comes to implementing retrofits.

Ownership Indicator Prevalence in Multifamily Buildings

Туре	Assumption	% of Large MF	% of Small MF
Owner-occupied	Owner occupied building may indicate a higher likelihood of investing in retrofits for non-economic drivers. Percentages do not include buildings with common ownership.	7%	51%
Regulated affordable housing	Owners of affordable housing have limits on rent increase from retrofit costs and may have greater interactions with the city through financing programs.	6%	1%
Cooperative building	These buildings have more challenging decision-making and will need strategic and prolonged support for working with their boards.	30%	3%
Buildings privately owned	Privately owned buildings often have limited options for interventions- either encouraging voluntary actions or mandating changes. These may risk passing retrofit costs onto tenants.	64%	97%
Buildings publicly owned	Publicly owned buildings may offer retrofit opportunities by developing relationships and provided targeted support to city departments.	1%	0%
Historic/ Landmark	Buildings classified as historic or within a landscape district will need additional support and may be less willing/interested in retrofits	47%	6%

Note: Buildings not included in these percentages do not meet the category criteria or are missing data for this category.

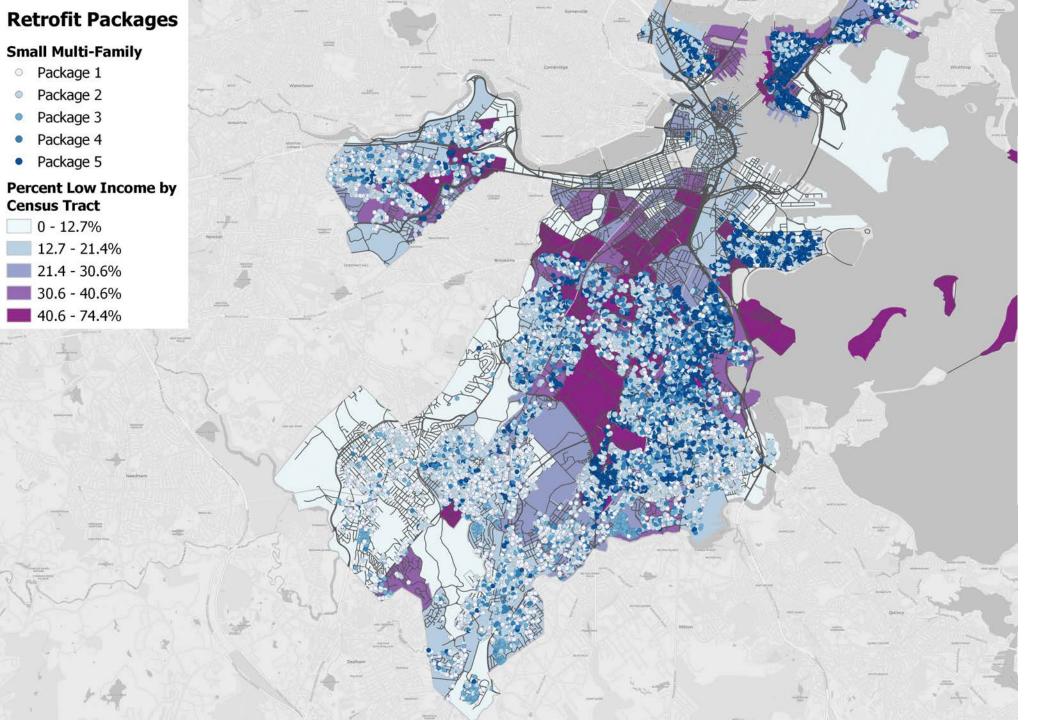
Decision-Making Indicators (Early Adopters)

Decision-making indicators can help identify owners or decision-makers who are more likely to voluntarily retrofit their buildings, given certain characteristics or history of making similar upgrades.

Decision-making Indicator Prevalence in Multifamily Buildings

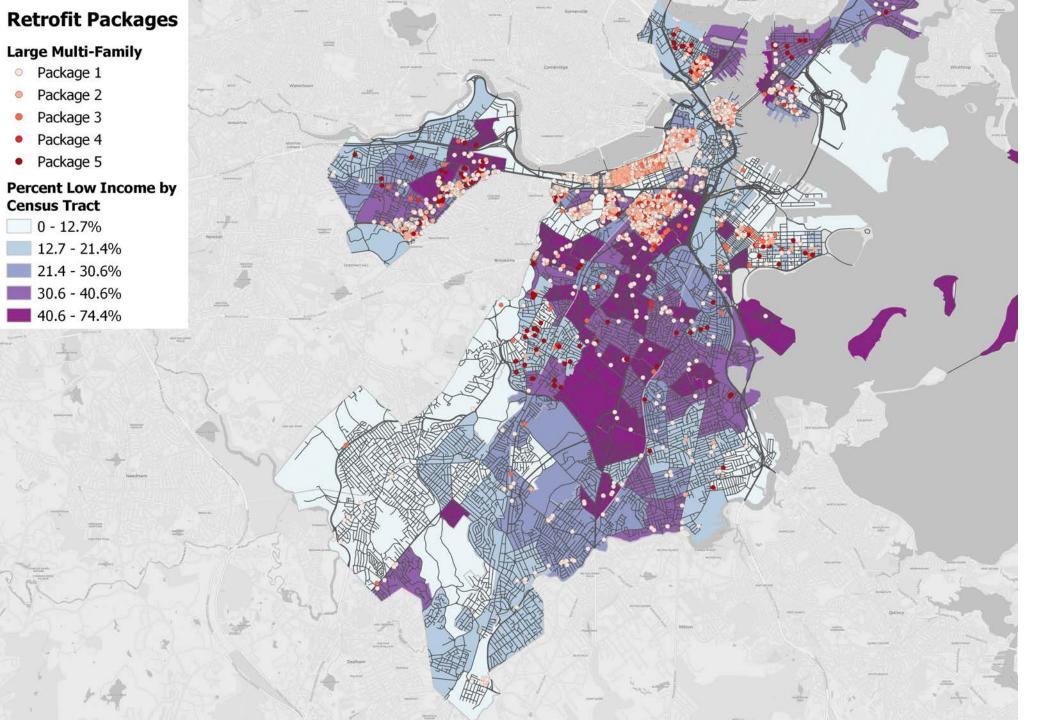
Туре	Assumption	% of Large MF	% of Small MF
Owner Occupied	Owner occupied building may indicate a higher likelihood of investing in retrofits for non-economic drivers. Percentages do not include buildings with common ownership.	7%	51%
Buildings with PV	These buildings have better economics for heat pumps and may indicate owners that are more inclined to install heat pumps as they are new technologies.	1%	3%
Buildings with lower rates of tenants with children*	Mass Save identified that families with children were least likely to participate in their programs due to time and money priorities.	44%	9%
Buildings with higher rates of tenants with higher income*	Households with higher rates of income may be more able to bear the higher costs of heat pump installations that is typically associated with early adopters.	41%	14%
Buildings with higher rates of seniors*	Mass Save identified that households with seniors are most likely to participate in their programs as they view these as good investments in their long-term home ownership.	23%	21%

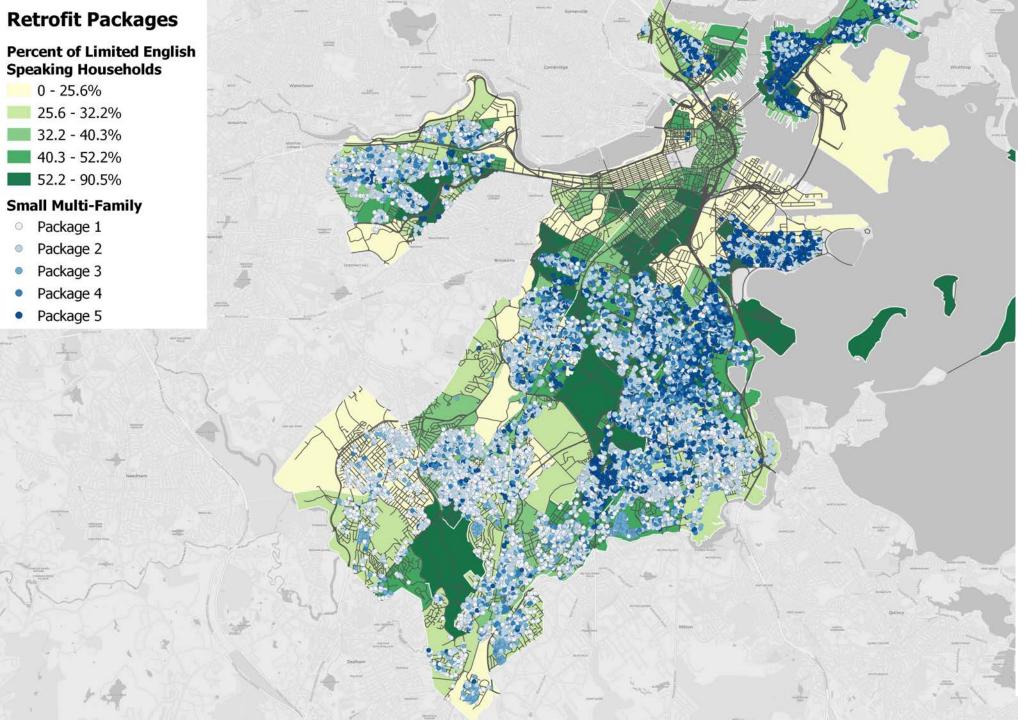
*Assumes top quartile of census tracts.


Social Vulnerability Indicators

Social vulnerability indicators help identify specific buildings or buildings in certain areas that have socioeconomic vulnerabilities that may justify prioritization for financial or technical assistance.

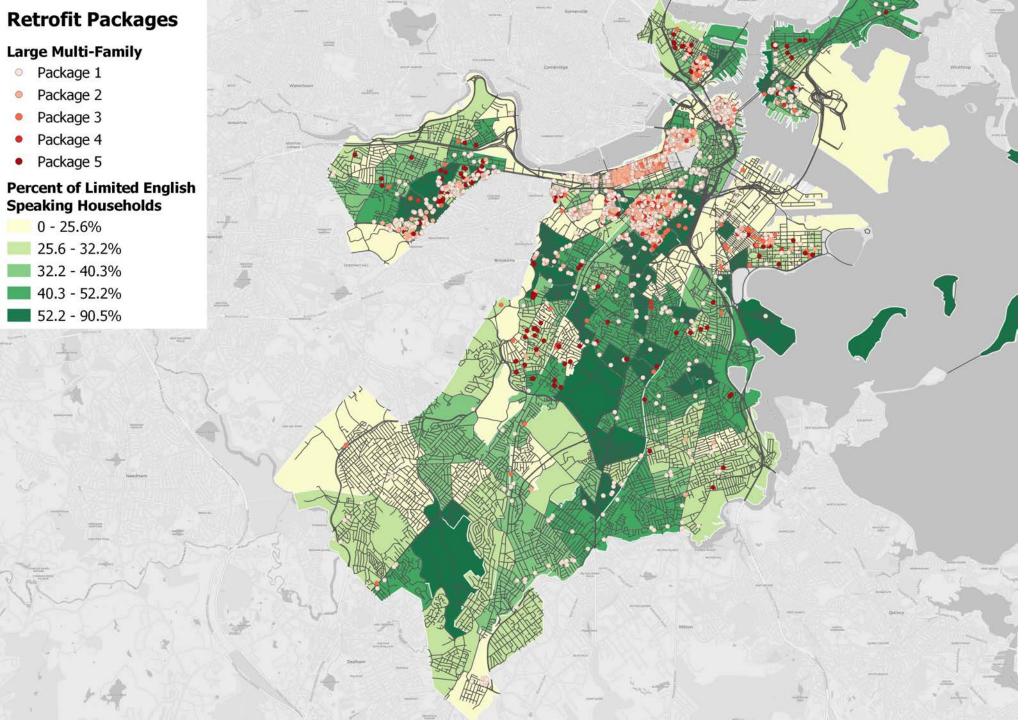
Туре	Assumption	% of Large MF	% of Small MF
Regulated affordable housing	Regulated affordable housing tend to house the city's low-income population, though tend to have restrictions to limit rent and operating cost increases.	6%	1%
Census tracts with higher rates of tenants with disabilities*	May need interventions to assist in living in-place. Heat pumps can offer cooling to the populations more at risk of heat-related illnesses.	12%	28%
Census tracts with higher rates of tenants with children*	Children may be more at risk of asthma in households with gas cooking and therefore may have greater need to convert these to all-electric buildings.	11%	32%
Census tracts with higher rates of tenants who are people of color*	In Boston, people of color statistically have lower levels of income and higher levels of poverty, which puts them at greater risk of climate impacts such as extreme heat and flooding and affordability from rent and energy cost increases.	13%	33%
Census tracts with higher rates of tenants with limited English proficiency*	These areas may have a higher need of multi-cultural, multi-lingual outreach, education, and assistance from culturally-competent staff.	17%	17%
Census tracts with higher rates of tenants with low to no income*	These tenants are more at risk of climate impacts, energy cost burdens, and poor living conditions. They would likely greatly benefit from envelope and heat pump retrofits, though cannot support increased energy costs.	17%	18%


Social Vulnerability Indicator Prevalence in Multifamily Buildings


Low Income Census Tracts and Small Multifamily Building Retrofit Opportunities

Small multifamily buildings with high retrofit potential are clustered in several lower-income census tracts, including East Boston, Allston/ Brighton, Roxbury, Dorchester, and Jamaica Plain.

Low Income Census Tracts and Large Multifamily Building Retrofit Opportunities


Large multifamily buildings are less clustered than small multifamily buildings in census tracts with low-income households, and instead tend to be in higherincome areas like Back Bay, Beacon Hill, Central Boston, and the South End.

Limited English Proficiency and Small Multifamily Building Retrofit Opportunities

Census tracts with limited Englishspeaking household largely overlap with low-income census tracts.

There are many small multifamily buildings with high retrofit potential clustered in these areas. Outreach to buildings in these areas should include resources in the appropriate languages.

Limited English Proficiency and Large Multifamily Building Retrofit Opportunities

There are some clusters of large multifamily buildings in areas with limited English-speaking households, including Chinatown, the South End, and parts of Allston/ Brighton along the Brookline border.

Table of Contents

- Multifamily Housing Stock Analysis Overview
- Envelope Retrofit Opportunities
- Heat Pump Retrofit Opportunities
- Retrofit Package Opportunities
- Ownership, Decision-making, & Social Vulnerability Indicators
- Recommendations

Recommendations

Building on this multifamily housing stock analysis, BEI offers the following recommendations to help Boston design a program that will scale up energy efficiency and electrification retrofits in multifamily buildings:

- Identify high-priority building sectors and design program support around their retrofit opportunities and needs. This analysis can
 be shared with stakeholders and community groups to identify and prioritize buildings in the greatest need of upgrades and their
 specific retrofit opportunities. Stakeholders can also provide valuable insights on strategies for engagement and and program
 support for these buildings.
- Prioritize buildings for program support based on their social vulnerabilities and other equity considerations. Multifamily buildings
 that house low-income residents and other Bostonians with social vulnerabilities will likely need the greatest levels of support to
 implement efficiency and electrification retrofit projects, and their residents also stand to benefit most from the health, safety,
 and comfort benefits of the upgrades.
- Provide specific retrofit recommendations to building decision-makers and offer assistance that is tailored to their ownership, decision-making, and social vulnerability factors. Based on past program experience, the more specific project opportunities that can be recommended, the more quickly and likely a building decision-maker will decide to act. Funding opportunities and other types of assistance available should also be tailored based on ownership, decision-making, and socioeconomic factors.
- As new programs are implemented, document findings that result from the experience of directly engaging with building decision-makers. This analysis represents information that could be gleaned from data analysis as a starting point for engaging with buildings. Even more important takeaways will emerge from directly engaging with building owners and decision-makers, which can further inform future programs, policies, and strategies.

Appendix

Envelope Retrofits | Additional Details

Specific Measures included in the Standard Envelope Retrofit

Retrofit	Description
Air Sealing and Weather Stripping	Air sealing/Caulking/Weather-stripping around windows and doors and other openings
Window Upgrades at the Time of Replacement	Upgrade windows at the time of replacement to at least a U-factor of ~0.30 or triple glazed, low-e windows
Insulate Rim Joist	Insulate rim joists to insulation levels between R-17 to R-40 levels

Specific Measures and Indicators Used to Identity the Attic/Roof Retrofit

Retrofit	Roof Type Data Indicator	Additional Data Indicator	Description
Insulate Attic	Gable, Hip, Gambrel, Mansard	Major Rehab and Year Built before 1995	Add blown-in insulation from interior to the maximum amount possible
Interior Insulation in Converted Attic	Gable, Hip, Gambrel, Mansard	Major Rehab or Year Built after 1995	Add blown-in insulation from interior to the maximum amount possible. Less insulation is possible in converted attics.
Exterior Roof Insulation	Flat	Year Built before 2008	Add insulation to the top of the roof (typically at the time of roof replacement) and, if there is a cavity, add blown in insulation from outside the building into the cavity.

Envelope Retrofits | Additional Details

Specific Measures and Indicators Used to Identity in the Wall Retrofit

Retrofit	Exterior Finish Data Indicator	Additional Data Indicators	Description
Interior Blown/Spray Insulation	Wood Shake, Brick/Stone Veneer, Aluminum, Frame/Clapboard, Vinyl	Year Built <1980 OR <50 Units OR >3 stories OR	Add Blown/Spray insulation to the max amount possible from within units.
Interior Wall Insulation Board	Stucco, Asphalt, Concrete, Brick/Stone	Historical District/Landmark Building	Add an insulation board between interior finish and mass wall, preferably at the time of replacement of interior wall.
Insulate Behind Spandrel	Glass		Add insulation behind spandrel to the maximum amount possible.
Exterior Wall Insulation at Time of Replacement	Wood Shake, Brick/Stone Veneer, Aluminum, Frame/Clapboard, Vinyl	>50 Units and Height <3 stories OR	Reclad and add exterior insulation when exterior is being replaced. Add blown insulation from exterior to cavity before interior wall if possible.
Exterior Wall Insulation	Stucco, Asphalt, Concrete, Brick/Stone	NOT Historical District/Landmark Building OR 3 foot buffer around property	Reclad and add exterior insulation. This retrofit will likely have diminishing returns for larger buildings and should be evaluated by professionals.
Consult Professional	Asbestos siding		Consult a professional on the preferred method for adding insulation to the envelope, given the location and quantity of the asbestos.

Notes: Adding insulation to interior walls is likely preferable when there are fewer units to enter or the building is taller, which would require additional equipment to reclad. In larger and shorter buildings, exterior recladding and insulation may be preferable. While non-mass wall exteriors are replaced periodically and the retrofit can be timed with replacement, mass wall exteriors are rarely replaced. Recladding these may be possible, although this can be costly and may have diminishing returns. Data is not available on which buildings have already completed the wall retrofits listed above.

Heat Pump Retrofits | Additional Details

Indicators Used to Identify Ducted ASHP Retrofits

Data Indicator Rules	Heat Pump Only Retrofit	+ Electric Upgrade Retrofit	+ Outdoor Location Retrofit	Description
Electrical Capacity	Gross Area >3,000 SF and Central AC OR Year Built after 1990		Gross Area >3,000 SF and Central AC OR Year Built after 1990	Larger buildings have a larger baseload and then would be likely to have 200 amps. Newer buildings are more likely to have been constructed with at least 200 amps.
Distribution	Heating: Forced Air OR A/C: Central AC			Buildings with forced air or central A/C have existing ducts for distribution.
Line Length /Location of Outdoor Components	Central A/C and Height <9 Stories OR Flat roof and > 1995 Year Built and Height < 9 Stories OR 3 foot buffer around building + <5 Stories		No 3 foot buffer around building + <5 Stories	Buildings with existing A/C have a current location for the outdoor condenser. Newer roofs may have the structural requirements for roof mounting. Shorter buildings can site on the ground if there is a 3 foot buffer around the building.

Notes: Ducted ASHPs are most appropriate in buildings that currently have ducts from heating or a central A/C system. An on-site assessment is important to evaluate the capacity of heat pump needed, location of outdoor condenser, and if the existing ducts are sized and located appropriately for a ducted heat pump. Boston buildings should install cold-climate heat pumps given the climate. Ducted heat pumps can be a displacement or replacement strategy, with appropriate controls.

Heat Pump Retrofits | Additional Details

Indicators Used to Identify Ductless ASHP Retrofits

Data Indicator Rules	Heat Pump Only Retrofit	+ Electric Upgrade Retrofit	+ Outdoor Location Retrofit	Description	
	Gross Area >3,000 SF and Central AC		Gross Area >3,000 SF and Central AC	Larger buildings have a larger baseload and thus would be likely to have 200 amps. Newer	
Electrical Capacity	OR		OR	buildings are more likely to have been constructed with at least 200 amps.	
	Year Built after 1990		Year Built after 1990	Buildings with electrical heating are more likely	
	OR		OR	to have 200 amps.	
	Electric Heating		Electric Heating		
Distribution	Heating: NOT Forced Air AND A/C: NOT Central AC			Buildings without forced air and central A/C do not have existing ducts.	
Line Length/Location of Outdoor Components	Exterior: brick/stucco/concrete and NOT Landmark/Historical District <i>OR</i> Flat roof and > 1995 Year Built and Height < 9 Stories <i>OR</i> 3 foot buffer around building + <5 Stories		No 3 foot buffer around building + <5 Stories	Buildings with existing A/C have a current location for the outdoor condenser. Newer roofs may have the structural requirements for roof mounting. Shorter buildings can site on the ground.	

Notes: Ductless ASHPs are most appropriate in buildings that do not have ducts from heating or a central A/C system. An on-site assessment is important to identify the locations of the indoor and outdoor units to provide sufficient heating. Boston buildings should install cold-climate heat pumps given the climate. Ductless heat pumps can be displacement or replacement strategies, depending on the existing heating system and configuration.

Building Electrification Institute

STA

SHO

R

A